作业帮 > 综合 > 作业

(2009•武汉五月调考)如图,O是△ABC的外接圆的圆心,∠ABC=60°,BF,CE分别是AC,AB边上的高且交于点

来源:学生作业帮 编辑:神马作业帮作业帮 分类:综合作业 时间:2021/10/27 11:36:32
(2009•武汉五月调考)如图,O是△ABC的外接圆的圆心,∠ABC=60°,BF,CE分别是AC,AB边上的高且交于点H,CE交⊙O于M,D,G分别在边BC,AB上,且BD=BH,BG=BO,下列结论:①∠ABO=∠HBC;②AB•BC=2BF•BH;③BM=BD;④△GBD为等边三角形,其中正确结论的序号是(  )

A.①②
B.①③④
C.①②④
D.①②③④
①延长AO交圆于点N,连接BN,则∠ABN=90°,又∠ACB=∠BNA,∠ABO=∠BAO,所以∠ABO=∠HBC.因此①正确;
②原式可写成
AB
BF=
2BH
BC,∠ABC=60°,那么BC=2BE,因此
BH
BE=
AB
BF,所以本题的结论也是正确的.
③∵△ABN∽△BFC(一组直角,∠OBA=∠OAB=∠FBC)∴
AB
BF=
AN
BC=
2OB
BC,BD=BO=BH=BG,BM=BD.
连接NC,在三角形ANC中∠ANC=∠ABC=60°,∴AN=2NC,BE:EC=tan30°,
在直角三角形ANC中,NC:AC=tan30°,
BM
AC=
NC
AC,∴BM=NC=BO=BD.
因此该结论也成立.
④在③中已经得出了BD=BG=BO=BH,而∠ABC=60°,因此三角形BGD是等边三角形.本结论也成立.
因此四个结论都成立,
故选D.